Numerical solutions of shock curves of hyperbolic 1-conservation laws
نویسندگان
چکیده
منابع مشابه
Numerical Methods for Hyperbolic Conservation Laws
2.1 Examples of conservative schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 The Godunov Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 The Lax-Friedrichs Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 The local Lax-Friedrichs Scheme . . . . . . . ....
متن کاملδ-Shock wave as a new type solutions of hyperbolic systems of conservation laws
A concept of a new type of singular solutions to hyperbolic systems of conservation laws is introduced. It is so-called δ-shock wave, where δ is n-th derivative of the delta function. We introduce a definition of δ′-shock wave type solution for the system ut + ( f(u) ) x = 0, vt + ( f ′(u)v ) x = 0, wt + ( f ′′(u)v2 + f ′(u)w ) x = 0. Within the framework of this definition, the Rankine–Hugonio...
متن کاملAsymptotic stability of relaxation shock profiles for hyperbolic conservation laws
This paper studies the asymptotic stability of traveling relaxation shock profiles for hyperbolic systems of conservation laws. Under a stability condition of subcharacteristic type the large time relaxation dynamics on the level of shocks is shown to be determined by the equilibrium conservation laws. The proof is due to the energy principle, using the weighted norms, the interaction of waves ...
متن کاملNumerical computation of viscous profiles for hyperbolic conservation laws
Viscous profiles of shock waves in systems of conservation laws can be viewed as heteroclinic orbits in associated systems of ordinary differential equations (ODE). In the case of overcompressive shock waves, these orbits occur in multi-parameter families. We propose a numerical method to compute families of heteroclinic orbits in general systems of ODE. The key point is a special parameterizat...
متن کاملNumerical solution of nonlinear hyperbolic conservation laws using exponential splines
Previous theoretical (McCartin 1989a) and computational (McCartin 1989b) results on exponential splines are herein applied to provide approximate solutions of high order accuracy to nonlinear hyperbolic conservation laws. The automatic selection of certain "tension" parameters associated with the exponential spline allows the sharp resolution of shocks and the suppression of any attendant oscil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling
سال: 1983
ISSN: 0270-0255
DOI: 10.1016/0270-0255(83)90059-3